Probing the phosphocholine-binding site of human C-reactive protein by site-directed mutagenesis.
نویسندگان
چکیده
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.
منابع مشابه
Site-Directed Mutagenesis in Human Granulocyte-colony Stimulating Factor, Cloning and Expression in Escherichia coli
Human granulocyte colony stimulating factor (hG-CSF) induces proliferation and differentiation of granulocyte progenitor cells. This glycoprotein is currently being used for treatment of neutropenia, in patients who have undergone bone marrow transplantation. So far, different researchers have tried to enhance hG-CSF biological activity and stability. In this study, Polymerase Chain Reaction (P...
متن کاملExposing a hidden functional site of C-reactive protein by site-directed mutagenesis.
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural chan...
متن کاملConstruction and Expression of Hepatitis B Surface Antigen Escape Variants within the "a" Determinant by Site Directed Mutagenesis
Background: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. Objectives: To construct clinically relevant recombinant muta...
متن کاملProbing the Binding of Valacyclovir Hydrochloride to the Human Serum Albumin
UV-visible and Fluorescence spectroscopic methods were employed to study the interaction of human serum albumin (HSA) with Valacyclovir Hydrochloride. Additionally, molecular dynamics and molecular docking simulations were used to visualize and specify the binding site of Valacyclovir Hydrochloride. The Stern-Volmer and van't Hoff equations along with spectroscopic observations, were used to de...
متن کاملSite-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene
Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 35 شماره
صفحات -
تاریخ انتشار 1992